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Abstract

Deformation mappings are considered that correspond to the motions of lattice defects, elastic stretch and rotation of the
lattice, and initial defect distributions. Intermediate (i.e., relaxed) con�guration spaces associated with these deformation maps
are identi�ed and then classi�ed from the di,erential-geometric point of view. A fundamental issue is the proper selection of
coordinate systems and metric tensors in these con�gurations when such con�gurations are classi�ed as anholonomic. The
particular choice of a global, external Cartesian coordinate system and corresponding covariant identity tensor as a metric
on an intermediate con�guration space is shown to be a constitutive assumption often made regardless of the existence of
geometrically necessary crystal defects associated with the anholonomicity (i.e., the non-Euclidean nature) of the space. Since
the metric tensor on the anholonomic con�guration emerges necessarily in the de�nitions of scalar products, certain transpose
maps, tensorial symmetry operations, and Jacobian invariants, its selection should not be trivialized. Several alternative (i.e.,
non-Euclidean) representations proposed in the literature for the metric tensor on anholonomic spaces are critically examined.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: Elastoplasticity; Incompatibility; Con�gurations

1. Introduction

The notion of a relaxed “intermediate” or “natu-
ral” con�guration in �nite deformation anelasticity
or elastoplasticity, wherein each local crystal volume
element exhibits a stress-free state, was forwarded
by many researchers in the mid-20th century [1–8].
Such a relaxed con�guration may correspond to the
intermediate con�guration arising from the usual

∗ Corresponding author. Tel.: +1-404-894-5128; fax: +1-
404-894-3203.

E-mail address: david.mcdowell@me.gatech.edu
(D.L. McDowell).

1 Current address: Impact Physics Branch, Army Research Lab-
oratory, Aberdeen Proving Ground, MD 21005-5069, USA.

multiplicative decomposition of the deformation gra-
dient [9,10], with the relaxed state associated with
the local unloading of each volume element from
its stressed state in the current (i.e., deformed or
Eulerian) con�guration. Alternatively, the relaxed
con�guration may correspond to local unloading of
each volume element from its reference (i.e., initial or
Lagrangian) state; such a natural con�guration will
di,er from the initial con�guration when the body
contains a distribution of internal residual stress �elds
associated with crystal defects, for example [11,7,12].

It is important to note that in most cases the
stress-free con�guration is only locally coherent (i.e.,
simply connected or holonomic), since each volume
element that undergoes relaxation will deform during

0020-7462/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0020-7462(03)00095-7
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the unloading process in a fashion that is incompat-
ible with the relaxation deformations of its neigh-
boring elements. In other words, a crystalline body
supporting a distribution of heterogeneous internal
stress �elds associated with defects must generally
be cut into multiple pieces in order to simultaneously
relieve the stress in every piece. The ensemble of
pieces comprises, in di,erential-geometric terminol-
ogy, an anholonomic space [13,14], or a space that
does not admit a homeomorphism (i.e., an invertible,
bi-continuous, one-to-one mapping) to coordinates
of a three-dimensional Euclidean space, the latter
being the geometric space occupied by the coherent
crystalline body prior to local stress relaxation. It is
also understood stresses are relaxed to zero only in
an average sense in the so-called “stress-free” con-
�guration. In other words, when traction is removed
from the external surface of each local volume el-
ement, self-equilibrating forces may still be present
internally, within each element. Total relaxation of
all internal forces (e.g., atomic and sub-atomic level
interactions) can only be achieved at observation
scales more far more re�ned than those describable
by continuum elastoplasticity theories.

A well-known fact from di,erential geometry is
that for a manifold (i.e., con�guration space) to ad-
mit a single global Cartesian coordinate frame whose
basis vectors are tangent to curves on the manifold,
the space must be Euclidean [13,15]. Necessarily as-
sociated with the Euclidean property of the space is
vanishing of the Riemann–Christo,el curvature ten-
sor constructed from partial derivatives of the metric
tensor of the coordinate system, with the metric tensor
corresponding to the covariant identity tensor (i.e., a
covariant Kronecker’s delta) when a single Cartesian
frame is selected. On the other hand, when the space
is non-Euclidean (e.g., anholonomic), prescription of
the Cartesian metric tensor implying a single set of
three orthonormal basis vectors spanning the global
anholonomic space may be an inappropriate assump-
tion when such basis vectors are identi�ed as tangents
to the material manifold in the intermediate con�gu-
ration [16]. In recognition of this issue, alternative co-
variant deformation measures (e.g., elastic, plastic, or
total strain tensors) have been implemented as metric
tensors for the purpose of lowering indices on con-
travariant quantities referred to anholonomic spaces
[17–20].

In this work we �rst review the criteria for labeling
a space as either holonomic or anholonomic and show
how such spaces arise in �nite elastoplasticity. We
next demonstrate reasons why a metric tensor on the
anholonomic con�guration must often be speci�ed: to
de�ne the transpose operation for mixed-variant ten-
sors, to conduct symmetry operations on nominally
mixed-variant tensors, to de�ne Jacobian invariants of
deformation mappings, and to de�ne scalar products
of vectors and contravariant tensors referred to the an-
holonomic space. Finally, several alternative choices
for the anholonomic con�guration coordinate system
and associated metric tensor are presented and then
critically evaluated within the context of �nite elasto-
plasticity.

2. Anholonomic con�gurations in �nite
elastoplasticity

Consider the following multiplicative decomposi-
tions for the total deformation gradient F [21]:

F= FeFp = KK−1
0 ;

Fa
:A = Fea

:�F
p�

:A = Ka
:aK

−1a

0 :A ; (1)

where the associated con�gurations and local tangent
spaces are illustrated in Fig. 1, and where all indices

Fig. 1. Con�gurations and tangent maps.
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a; A; �;a = 1; 2; 3. We label the reference con5g-
uration (i.e., the initial state) as Bref , the current
con5guration (i.e., deformed state) as Bcur, the inter-
mediate con5guration of �nite elastoplasticity (i.e.,
the relaxed state achieved via locally unloading from
the current con�guration) as B̃int, and the natural
con5guration (i.e., the relaxed state achieved via lo-
cal unloading from the reference con�guration) as
B. Local unloading from the reference con�gura-
tion is associated with relaxation of internal stress
�elds corresponding to dislocations and other defects
present within the crystal(s) at the initial time, when
the entire crystalline body is typically assumed to be
free of external traction. Local unloading from the
current con�guration corresponds to simultaneous
relaxation of internal stress �elds due to dislocations
and other defects present at the current time as well
as any traction applied to the external surface of the
crystalline body. As mentioned already, the partic-
ular relaxed con�guration attained depends strongly
upon the size of each local volume element, and the
so-called “internal stress �elds” that are relaxed here
may be viewed as stresses arising from the traction
applied externally to the surface of each local volume
element. The elastic and plastic tangent maps of mul-
tiplicative elastoplasticity are written in Eq. (1) as
Fe and Fp, respectively. The tangent map K0 links
the natural and reference con�gurations, while the
tangent map K links the natural and current
con�gurations. We remark that while some authors
have multiplicatively decomposed our K into elastic
and plastic parts [22,12], we �nd the decomposition
(1) more convenient in the present setting, since in
our approach the covariant leg of Fp is referred to
the Euclidean space Bref . In precise terms, when de-
�ned in terms of stress relaxation, the (inverse of
the) elastic tangent map Fe is characterized only up
to an arbitrary rotation tensor [10]. Some aspect of
the microstructure is needed to specify the elastic
(or plastic) rotation, such as local lattice orientation
in classical crystal plasticity theories, for example
(cf. [12]).

We require in the present work for F to be compat-
ible (i.e., integrable, holonomic, or a true deformation
gradient):

F=
@x
@X

; Fa
:A =

@xa

@X A ; (2)

where x and X are current and reference coordi-
nates, respectively, the former assumed to be smooth
single-valued functions of the latter and time t. Fol-
lowing directly from (2), certain integrability condi-
tions are automatically ful�lled:

Fa
:A;B =

@2xa

@X A@X B =
@2xa

@X B@X A

= Fa
:B;A → Fa

:A;B − Fa
:B;A ≡ 2Fa

:[A;B] = 0; (3)

where, as shown, the subscripted comma denotes par-
tial coordinate di,erentiation and the bracketed indices
are anti-symmetrized.

In contrast to F, the deformation maps Fe, Fp, K,
and K0 generally do not ful�ll conditions analogous
to (2) and (3); i.e., these maps are generally not in-
tegrable. In fact, the lack of their integrability is of-
ten associated with the presence of crystal defects (cf.
[4,5]). For example, consider the line integral of the
di,erential vector element dx̃ ≡ Fp dX about a closed
contour c̃ in B̃int:

b̃� ≡
∮
c̃

dx̃� =
∮
C

Fp�

:A dX A

= −
∫
A
Fp�

:[A;B] dX A ∧ dX B; (4)

where we have assumed Cartesian coordinates
X A ∈Bref and invoked Stokes’ theorem (cf. [13,23])
to convert from a line integral to a surface integral
over the area A enclosed by the loop C (the image
of c̃ in Bref ), and where the skew-symmetric rank 2
di,erential area element is denoted by dX A ∧ dX B. In
Eq. (4), b̃ is typically called the net Burgers vector
of all geometrically necessary dislocations piercing
the area A at the current time. Equivalently, we may
write for b̃

b̃� ≡
∮
c̃

dx̃� =
∮
c

Fe−1�

:a dxa

= −
∫
a
Fe−1�

:[a;b] dxa ∧ dxb (5)

in terms of the inverse of the tangent map Fe and the
area element dxa ∧ dxb in the current con�guration.
We see from (5) that the anholonomicity of B̃int is
directly related to defects present within the crystal at
the current time, since con�guration B̃int is de�ned in
terms of local elastic unloading from Bcur. It should
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be noted that while Eq. (4) de�nes b̃ in terms of dif-
ferentiation and line and area elements referred to the
reference con�guration, b̃ of (4) is equivalent to b̃ of
(5) and is not indicative of internal stress �elds due
to dislocations present at the initial time. Instead, we
must de�ne a di,erent net Burgers vector b quantify-
ing the anholonomicity of con�guration B and rep-
resentative of the defect densities present within the
crystal at the initial time (since B is de�ned in terms
of local elastic unloading from the initial state Bref ):

ba ≡
∮
c

dxa =
∮
c

K−1a
:a dxa

= −
∫
a
K−1a

:[a;b] dxa ∧ dxb; (6)

ba ≡
∮
c

dxa =
∮
C

K−1a

0 :A dX A

= −
∫
A
K−1a

0 :[A;B] dX A ∧ dX B; (7)

where c is a closed circuit in the natural con�guration
B. In the interest of brevity, subsequent equations will
focus upon the multiplicative decomposition F=FeFp

and the associated anholonomic space B̃int; however,
our arguments will generally also apply to the decom-
position F = KK−1

0 and the corresponding anholo-
nomic space B.

Basis vectors locally tangent to the Euclidean spaces
Bref and Bcur, respectively, are written

GA ≡ @
@X A ; ga ≡ @

@xa
: (8)

Corresponding dual bases cotangent to Bref and Bcur,
respectively, are written as GA and ga, and are de�ned
such that the following dual (i.e., scalar) products are
satis�ed:

〈GA;GB〉 = �A
B; 〈ga; gb〉 = �a

b; (9)

where �A
B and �a

b are Kronecker’s delta symbols, i.e.
�A
B = 1 for A = B, �A

B = 0 for A �= B, with analogous
relations for �a

b. From (8) we see that the basis vectors
of the Euclidean spaces Bref and Bcur are holonomic
basis vectors, satisfying the integrability conditions
[13]

G[A;B] = 0; g[a;b] = 0: (10)

The deformation gradient is then written as follows in
terms of components and basis vectors:

F= Fa
:Aga ⊗GA =

@xa

@X A ga ⊗GA: (11)

Similarly, we write for Fe and Fp:

Fp = Fp�

:Ag̃� ⊗GA; Fe = Fea
:�ga ⊗ g̃�; (12)

where the anholonomic basis vectors g̃� and associ-
ated covectors g̃� must obey

〈g̃�; g̃�〉 = ��
� (13)

in order to ensure satisfaction of the multiplicative
decomposition (1), and where ��

� = 1 for � = � and
��
� = 0 for � �= �. In general, g̃[�;�] �= 0 (compare

with Eq. (10) for holonomic bases), since we cannot
di,erentiate with respect to anholonomic coordinates
x̃� ∈ B̃int in the conventional manner and since no re-
lations analogous to (8) apply to the g̃�. If we de5ne
anholonomic coordinate di,erentiation as [13]
@( )
@x̃�

≡ @( )
@X A Fp−1A

:� =
@( )
@xa

Fea
:� ; (14)

then

g̃[�;�] = g̃[�;AF
p−1A

:�] = g̃[�;aFea
:�] �= 0 (15)

are additional conditions associated with the anholo-
nomicity of con�guration B̃int. On the other hand, only
when B̃int is simply connected (and Euclidean), mean-
ing that the x̃� are holonomic coordinates of xa or X A,
do we have

Fp�

:A =
@x̃�

@X A ; Fe−1�

:a =
@x̃�

@xa
; g̃� =

@
@x̃�

;

g̃[�;�] = 0: (16)

3. The metric tensor on an anholonomic space

The metric tensor on the anholonomic space B̃int is
written here as g̃ = g̃��g̃� ⊗ g̃� and is symmetric by
de�nition, i.e. g̃�� = g̃��. It satis�es

g̃�� = g̃� · g̃�; (17)

where “·” denotes the scalar product or inner product
of contravariant vectors. The scalar product of two
arbitrary vectors ã and b̃ on the tangent space of B̃int

then becomes, from (17),

ã · b̃= ã�g̃� · b̃�g̃� = ã�b̃�(g̃� · g̃�) = ã�g̃��b̃�: (18)
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Components of the metric tensor g̃ are used to lower
indices in the conventional manner, i.e.,

ã� = g̃��ã�; (19)

and are needed to compute the transpose maps of
mixed-variant tensors (cf. [15]), e.g.,

FeT�

:a = g̃ ��Feb
:�gab = g̃ ��Fe∗ :b

� gba;

FpTA

:� = g̃��F
p�

:BG
AB = g̃��F

p∗ :�

B GBA; (20)

where g̃ �� are components of the inverse metric g̃−1,
GAB are components of the inverse of the metric ten-
sor G on the reference con�guration Bref , and gab are
components of the metric tensor g on Bcur. Addition-
ally in (20) the dual map operation corresponding to
a horizontal exchange of indices is denoted by the su-
perposed “∗” [24,25]. From relations (20), we are in
position to de�ne symmetric elastic and plastic strain
tensors referred to the current and reference con�gu-
rations, respectively, e.g. the covariant Ce and Cp:

Ce
ab ≡ FeT�

:a gbcFec
:� = Ce

ba;

Cp
AB ≡ FpTC

:� GCAF
p�

:B = Cp
BA: (21)

The metric tensor g̃ is also needed to symmetrize
nominally mixed-variant tensors referred to con�gura-
tion B̃int. For example, consider the so-called “plastic
velocity gradient” L̃p:

L̃p ≡ ḞpFp−1; L̃p�

:� ≡ Ḟp�

:AF
p−1A

:� ; (22)

where the superposed dot denotes the material time
derivative. The transpose of the covariant version of
L̃p is written

L̃pT
�� = L̃p

�� = g̃��Ḟ
p�

:AF
p−1A

:� (23)

from which follow the covariant symmetric rate of
plastic deformation D̃p and the skew-symmetric “plas-
tic spin” W̃p:

2D̃p
�� = L̃p

�� + L̃p
��; 2W̃ p

�� = L̃p
�� − L̃p

��;

L̃p
�� = D̃p

�� + W̃ p
��: (24)

Multiplying (24) by through by g̃ �� results in

L̃p�

:� = g̃ ��D̃p
�� + g̃ ��W̃ p

�� = D̃p�

:� + W̃ p�

:�; (25)

where D̃p�

:� ≡ g̃ ��D̃p
�� and W̃ p�

:� ≡ g̃ ��W̃ p
�� both depend

upon the metric g̃ (from (23)) and its inverse (from

(25)). We thus see that the plastic velocity gradient
L̃p can only be decomposed into stretch rate and spin
terms after a metric tensor g̃ has been introduced, as
noted by Maugin [18].

Jacobian invariants of deformation mappings Fe and
Fp de�ning the relationships between volume elements
dv ⊂ Bcur, dṽ ⊂ B̃int, and dV ⊂ Bref also depend upon
g̃. For example, letting z̃� and ZA denote coordinates
referred to local Cartesian frames on B̃int and Bref ,
respectively, we write [8]

J p ≡ dṽ
dV

= det
(

@z̃�

@ZA

)
= det

(
@z̃�

@x̃�
Fp�

:B
@X B

@ZA

)

= det(Fp�

:B)
√

det(g̃��)=det(GAB); (26)

where we have used the identities det(g̃��) =
(det(@z̃�=@x̃�))2 and det(GAB) = (det(@ZA=@X B))2 (cf.
[15]). Analogously for Fe we write

J e ≡ dv
dṽ

= det
(
@za

@z̃�

)
= det

(
@za

@xb
Feb

:�
@x̃�

@z̃�

)

= det(Feb
:�)

√
det(gab)=det(g̃��); (27)

with za denoting Cartesian coordinates on Bcur such
that det(gab) = (det(@za=@xb))2. We can alternatively
write (26) and (27) as [26]

J p = 1
6 �̃����

ABCFp�

:AF
p�

:BF
p�

:C

= 1
6 (
√

g̃=G)e���eABCF
p�

:AF
p�

:BF
p�

:C ; (28)

J e = 1
6 �̃

����abcFea
:�F

eb
:�F

ec
:�

= 1
6 (
√

g=g̃)e���eabcFea
:�F

eb
:�F

ec
:� ; (29)

where we have used the shorthand notation g ≡
det(gab), g̃ ≡ det(g̃��), and G ≡ det(GAB). Permu-
tation tensors in Eqs. (28) and (29) are de�ned by
�ABC ≡ −1

√
GeABC , �̃��� ≡ √

g̃e���, �abc ≡ √
geabc,

and �̃��� ≡ −1
√
g̃e���, with eABC , e���, eabc, and e���

standard permutation symbols each referred to the
con�guration indicated by its indices. Consider for
example the incompatibility described by Eq. (5),
which can be rewritten as

b̃� = −
∫
a
Fe−1�

:[a;b] dxa ∧ dxb = −
∫
a
�abcFe−1�

:[a;b] nc da

= −
∫
a
�abcFe−1�

:a;b nc da =
∫
a
Ae�cnc da; (30)
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where the second rank area element has been con-
verted to an axial covector n da via dxa ∧ dxb =
�abcnc da, and where the two-point dislocation density
tensor Ae�c ≡ −�abcFe−1�

:a;b . Mapping the integrand in
(30) to the intermediate con�guration via Nanson’s
formula (cf. [27]) gives

b̃� =
∫
a
Ae�cnc da =

∫
ã
J eFe−1�

:c Ae�c ñ� dã

=
∫
ã
Ãe�� ñ� dã; (31)

where Ãe�� ≡ J eFe−1�

:c Ae�c is the intermediate con�gu-
ration dislocation density tensor, which depends upon
J e and hence, from Eq. (29), g̃. Should we opt to allow
the (scalar) residual free energy  ̃ GN of the crystal as-
sociated with geometrically necessary dislocations to
depend quadratically upon a dislocation density mea-
sure referred to B̃int such as Ãe (cf. [27–29]), we then
write, for example,

 ̃ GN = 1
2"l

2Ãe : Ãe = 1
2"l

2Ãe�� g̃��g̃��Ãe�� ; (32)

where " and l are an elastic shear modulus and char-
acteristic length, respectively. Thus, the scalar prod-
uct in Eq. (32) is another instance in �nite crystalline
elastoplasticity where g̃ is required.

4. Metric tensors and anholonomic basis vectors:
possible choices

We now discuss some conceivable choices for the
metric tensor g̃ and associated basis vectors g̃�. The
simplest and by far most prevalent option from
the literature is to impose (cf. [7,8,22,30])

g̃�� = g̃� · g̃� = ���; (33)

with ��� the covariant Kronecker’s delta, i.e. ��� = 1
for �=� and ��� =0 for � �= �. Eq. (33) indicates that
contravariant vectors de�ned on B̃int are referred to a
single global Cartesian frame (i.e., orthonormal g̃�),
or, equivalently, a parallel (i.e., identical) Cartesian
frame attached to each local relaxed volume element
dṽ ⊂ B̃int. Such a choice implies either that (i) B̃int is a
Euclidean space or that (ii) the g̃� are not actually tan-
gent to any coordinate lines scribed on the base man-
ifold B̃int (since such coordinates do not exist in the

discontinuous anholonomic space) but instead corre-
spond to some external reference frame. As discussed
already in Section 2 of the present work, statement (i)
is ruled out in the presence of crystal defects such as
dislocations that render B̃int anholonomic. This leaves
statement (ii), which is diNcult to interpret geomet-
rically: from its standpoint, vectors in con�guration
B̃int are not referred to the actual tangent spaces of a
material manifold in B̃int but are instead referred to
the �xed external Cartesian frame(s). The intermedi-
ate metric ��� (or equivalently, the external Cartesian
frame) is introduced rather arti�cially in such theo-
ries as an additional constitutive entity, accompanying
variables Fe and Fp. We also mention the related work
of Simo [31], wherein the intermediate con�guration
metric is given by g̃�� = �A

:�GAB�B
:�, implying a Eu-

clidean metric structure for B̃int when Bref is Euclidean,
and relying upon the external two-point construct �A

:�.
While we are unable to rigorously rule out the choice
(33) on any fundamental grounds, we emphasize next
several alternatives that have been proposed in the
literature that, in contrast to Eq. (33), do not make
the embedding of a non-Euclidean space B̃int within
a global Cartesian space equipped with a Euclidean
metric tensor ���. (It should be noted, however, that
our derivations (26) and (27), wherein Cartesian z̃�

are assigned to each volume element dṽ ⊂ B̃int, do
rely on such an assumption, at least locally.)

One such alternative is to specify the metric ten-
sor g̃ as the covariant elastic deformation tensor C̃e

[17,18,20], i.e.

g̃�� = C̃e
�� ≡ Fea

:�gabFeb
:� = Fea

:�ga · Feb
:�gb = g̃� · g̃�;

(34)

implying that the anholonomic basis vectors are de-
�ned by g̃� ≡ Fea

:�ga. Analogously, one could imple-
ment the covariant plastic deformation tensor C̃p as a
metric [32]

g̃�� = C̃p
�� ≡ Fp−1A

:� GABF
p−1B

:�

= Fp−1A

:� GA · Fp−1B

:� GB = g̃� · g̃�; (35)

meaning that g̃� ≡ Fp−1A

:� GA. (It should be noted that
Miehe [32] suggested several alternative metric ten-
sors on each con�guration, in addition to (35).) In Eqs.
(34) and (35) we have used, respectively, the standard
Euclidean relations gab=ga ·gb and GAB=GA ·GB. The
g̃� in (34) or (35) are still not tangent to any global
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coordinate curves x̃� (since such coordinates are pre-
cluded by the anholonomicity of B̃int), but they do ex-
ist in a one-to-one manner with the set ga(x) and the
map Fe or with the set GA(X) and the map Fp−1, re-
spectively. It follows that C̃e and C̃p are well-de�ned
geometric quantities referred to the space B̃int, in con-
trast to the somewhat arti�cial, external object ��� of
(33) that cannot be derived from the elastic or plastic
tangent maps and basis vectors on Bref or Bcur. Con-
sider now the rank 4 Riemann–Christo,el curvature
tensor formed from C̃e on the anholonomic space B̃int,
with components [13,14]

R̃�
��� ≡

@%̃�
��

@x̃�
− @%̃�

��

@x̃�
+ %̃�

��%̃
�
��

−%̃�
��%̃

�
�� + 2&̃�

��%̃
�
��; (36)

where the coeNcients of the metric connection are
found by 2C̃e

��%̃
�
�� = C̃e

��;� + C̃e
��;�− C̃e

��;� and compo-

nents of the anholonomic object by &̃�
��=Fea

:�F
eb
:�F

e−1�

:[a;b].
The conditions R̃�

��� = 0 and &̃�
�� = 0 hold identically

only when Fea
:� =xa:;�, i.e., only when B̃int is homeomor-

phic to the Euclidean space Bcur and x̃� are holonomic
coordinates for which we can de�ne partial di,eren-
tiation as usual. Under such conditions, R̃�

��� is the
pull-back of the curvature tensor formed from the met-
ric tensor gab, which itself vanishes since Bcur is Eu-
clidean. Analogous statements regarding the curvature
can be made for C̃p, i.e. the curvature tensor derived
from C̃p vanishes identically only when Fp�

:A = x̃�:;A and
B̃int is Euclidean.

A third alternative methodology [33] involves in-
troduction of the new multiplicative decomposition

F= F̂eF̂p; Fa
:A = F̂ea

:BF̂
pB

:A; (37)

where both legs of the new plastic deformation tensor
F̂p are referred to Bref and where F̂e is a two-point
tensor between tangent spaces of Bref and Bcur, i.e.

F̂e = F̂ea
:Bga ⊗GB; F̂p = F̂pB

:AGB ⊗GA: (38)

Following Le and Stumpf [33], we introduce the
two-point transformation matrix H, satisfying

Fea
:� = F̂ea

:BH
−1B

:� ; Fp�

:A = H�
:BF̂

pB

:A; (39)

such that Eqs. (1) and (37) are satis�ed simultaneously

Fa
:A = Fea

:�F
p�

:A = F̂ea
:BH

−1B

:� H�
:BF̂

pB

:A = F̂ea
:BF̂

pB

:A: (40)

The anholonomic basis vectors and covectors are
found in terms of H as, respectively,

g̃� ≡ H−1A

:� GA; g̃� ≡ H�
:AG

A; (41)

so that the dual product obeys the standard relations

〈g̃�; g̃�〉 = 〈H−1A

:� GA; H
�
:BG

B〉 = H−1A

:� H�
:B〈GA;GB〉

= H−1A

:� H�
:B�

B
A = ��

� ; (42)

leading then to the representation of the metric tensor
on B̃int:

g̃�� = g̃� · g̃� = H−1A

:� GA · H−1B

:� GB

= H−1A

:� GABH−1B

:� : (43)

Eq. (41) implies that the elastic deformation maps Fe

and F̂e are the same (two-point) tensor, although each
is referred to di,erent coordinate bases:

Fe = Fea
:�ga ⊗ g̃� = (F̂ea

:CH
−1C

:� )ga ⊗ (H�
:BG

B)

= F̂ea
:Bga ⊗GB = F̂e: (44)

Analogously, for the plastic tangent mappings we have

Fp = Fp�

:Ag̃� ⊗GA = (F̂pC

:AH
�
:C)(H−1B

:� GB) ⊗GA

= F̂pB

:AGB ⊗GA = F̂p: (45)

From the anholonomicity conditions (15) we see that

g̃[�;�] = H−1A

:[�;�]GA + H−1A

:[� GA;�] = H−1A

:[�;�]GA

+H−1A

:[� GA;BF
p−1B

:�] �= 0: (46)

Upon choosing a Cartesian reference coordinate sys-
tem for the Euclidean space Bref , we obtain GA;B = 0,
and Eq. (46) becomes

g̃[�;�] = H−1A

:[�;�]GA �= 0→ H−1A

:[�;�] �= 0; (47)

meaning that H (or its inverse) is generally not deriv-
able as the gradient of a vector-valued function when
B̃int is anholonomic. On the other hand, only when the
intermediate con5guration is holonomic and g̃[�;�] =0
can we write

H�
:A =

@ỹ �

@X A ; H−1A

:� =
@X A

@ỹ � ; (48)
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where ỹ �=ỹ �(X A; t) are new coordinate functions on
B̃int, not necessarily identical to x̃�. Upon invocation
of the holonomicity relations (16) we obtain

F̂ea
:A = Fea

:�
@ỹ �

@X A =
@xa

@x̃�
@ỹ �

@X A ;

F̂pB

:A =
@X B

@ỹ � Fp�

:A =
@X B

@ỹ �

@x̃�

@X A ; (49)

from which, for the particular choice of x̃� = ỹ �, re-
sults in F̂ea

:A = Fa
:A and F̂pB

:A = �B
:A. Returning now to

the anholonomic case and substituting (39) into (4),
we see that the incompatibility (i.e., closure failure or
net Burgers vector in con�guration B̃int) depends si-
multaneously upon gradients of F̂pB

:A and H�
:C :

b̃� = −
∫
A
(HF̂p)�:[A;B] dX A ∧ dX B

= −
∫
A
(F̂pC

:[A;B]H
�
:C+F̂pC

:[AH
�
:C;B]) dX A∧dX B; (50)

implying that knowledge of components and gradi-
ents of F̂pB

:A alone is not suNcient to characterize the
incompatibility of Eq. (4) (i.e., one needs either Fp�

:A

(Eq. (4)), Fe−1�

:a (Eq. (5)), or both of F̂pB

:A and H�
:B (Eq.

(50)). Thus, while attractive at �rst glance since no an-
holonomic basis vectors directly enter the multiplica-
tive decomposition (37), the methodology outlined in
Eqs. (37)–(50) can only be used within the context
of classical higher-order gradient, dislocation-based
crystalline elastoplasticity, wherein the incompatibil-
ity is referred to the anholonomic intermediate con-
�guration B̃int, when the additional tensor H and its
inverse are available for mapping to and from that con-
�guration. However, the method should de�nitely not
be disregarded, as Le and Stumpf [33] successfully
applied this description to de�ne a di,erent Burgers
vector B (i.e., an incompatibility) referred to the holo-
nomic reference con�guration, in terms of the lack of
integrability of F̂e, i.e.

BA ≡
∮
c

F̂e−1A

:a dxa = −
∫
a
F̂e−1A

:[a;b] dxa ∧ dxb: (51)

It should be noted that in this context, components of
F̂ea

:A are not associated with loading from a locally un-
stressed and anholonomic state to a stressed state, but
rather describe, at each point in the crystal, the stretch
and rotation of a triad of lattice director vectors occur-
ring between the initial con�guration and the current

con�guration, with F̂p =F̂e−1F any remaining “inelas-
tic” deformation referred to the reference state.

5. Discussion

Additional critical comments regarding the par-
ticular choices of intermediate con�guration metric
tensor listed in Eqs. (33), (34), (35), and (43) are
now in order. Consider �rst the designation given
by (33): g̃�� = ���. This prescription is by far the
most common in �nite deformation plasticity theories
from the literature, as it is made implicitly whenever
Cartesian coordinates for the intermediate con�gura-
tion B̃int are invoked, be it for the purpose of de�ning
di,erential volume change [7,8], calculating a norm
or scalar product of contravariant vectors or tensors
[27–30], or decomposing the plastic velocity gradi-
ent L̃p into distinct deformation rate and spin terms
(cf. [34]). We remark that Regueiro et al. [29] ac-
knowledged the non-Euclidean character of B̃int but
gave no explicit alternative to the Cartesian metric
tensor for use on B̃int. As stated already, choice (33)
cannot be ruled out unequivocally via mathemati-
cal or physical arguments. However, since the unit
metric tensor (i.e., covariant Kronecker’s delta ���)
is not considered a well-de�ned geometric variable
on a non-Euclidean space (cf. [16]), and since B̃int

is clearly non-Euclidean (i.e., not homeomorphic to
three-dimensional Euclidean space) under conditions
of heterogeneous, incompatible plastic deformation,
the metric ��� of (33) must be viewed as an addi-
tional, stationary constitutive variable introduced by
the modeler, accompanying any constitutive relations
specifying the time evolution of components of Fe

and Fp. In contrast, the choices given in (34), (35),
and (43)—wherein the intermediate metric tensors
are de�ned directly in terms of elastic or inelastic
tangent mappings—may be viewed as favorable al-
ternatives to (33) since the former do not require
the modeler to prescribe an intermediate metric via
introduction of an additional constitutive variable.
Maugin [19] voiced similar opinions regarding the
choice of metric tensor on our natural con�guration B
(Fig. 1), cautioning against usage of a Cartesian met-
ric on a non-Euclidean space. Instead, Maugin [19]
elected to employ the quantity Ka

:agabK
b
:b as a met-

ric for lowering contravariant indices on the generally
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anholonomic space B. It should also be noted that
while the covariant object ��� cannot be constructed
directly from anholonomic mappings Fe or Fp, the
mixed-variant unit tensor (i.e., true Kronecker’s
delta) ��

:� can be introduced explicitly via the inverse

operation, i.e. ��
:� = Fe−1�

:a Fea
:� or ��

:� = Fp�

:AF
p−1A

:� .

Eq. (34), prescribing g̃�� = C̃e
�� ≡ Fea

:�gabFeb
:� as a

possible alternative to (33), has been proposed ex-
plicitly by at least several others [17,18,20], and is
analogous to the aforementioned approach favored by
Maugin [19] when K is replaced by Fe. The quantity
C̃e

�� is considered to be a well-de�ned geometric entity
with indices referred to the intermediate con�guration
B̃int, since its constituents Fea

:� and gab are by de�ni-
tion single-valued functions of current coordinates xa.
(This is in contrast to the external construct ��� which
must be introduced by an additional constitutive as-
sumption.) Moreover, the Riemann–Christo,el curva-
ture tensor R̃�

��� and the anholonomic object &�
�� of

Eq. (36) both vanish identically only when Fe−1 is an
integrable function of x and B̃int is Euclidean, mean-
ing that assignment of C̃e

�� as components of a metric
tensor agrees fully with the non-Euclidean nature of
the generally anholonomic space B̃int. Consider also
the implications of choice (34) in a thermodynamic
assumption for stored elastic energy such as Eq. (32):
the free energy associated with geometrically neces-
sary dislocations, written herein as  ̃ GN, would depend
explicitly upon the elastic strain metric C̃e

��. Such an
assumption is in fact supported by previous physical
[35] and numerical [36] experiments on various duc-
tile pure metals and their alloys, wherein ampli�cation
of internal energy of dislocation arrays at Sexing grain
and sub-grain boundaries in the presence of applied
loads was discovered. In light of the above reasons,
we endorse here usage of C̃e

�� as a viable alternative to
��� as a metric tensor on the globally non-Euclidean,
anholonomic space B̃int.

Prescription of the plastic strain tensor C̃p
�� ≡

Fp−1A

:� GABF
p−1B

:� as a metric g̃�� was suggested in Eq.
(35), following previous work by Miehe [32]. The
quantity C̃p

�� is considered to be a well-de�ned ge-
ometric entity with indices referred to the interme-
diate con�guration, since its constituents Fp−1A

:� and
GAB are by de�nition single-valued functions of refer-
ence coordinates X A and time t. This approach appears

especially attractive since for the case of no plastic
deformation (and hence no defects or anholonomic-
ity), we have Fp−1A

:� = �A
:� and g̃�� = �A

:�GAB�B
:�, thus

reducing to the prescription of Simo [31]. However,
from the perspective of Eq. (32), this method presents
some diNculties, since the plastic strain C̃p

�� would

enter the free energy expression  ̃ GN, and since we
do not view the plastic strain in most cases as a useful
state quantity or accurate measure of stored elastic
energy. The latter point is of no concern in local
theories (e.g. Miehe [32]) wherein higher-order de-
formation gradients are not explicitly considered and
energetic quantities such as  ̃ GN of (32) are not com-
puted. But in nonlocal thermomechanical theories
framed in the relaxed intermediate con�guration (cf.
[27–29]) wherein relations such as (32) are invoked,
then we regard the choice of intermediate metric C̃e

��
(34) as more physically plausible than the choice
g̃�� = C̃p

�� (35).
Finally, consider the aforementioned approach

of Le and Stumpf [33], with the multiplicative de-
composition in component form given by Eq. (37):
Fa

:A = F̂ea
:BF̂

pB

:A. As discussed already, this decom-
position enjoys the simplicity of not requiring any
anholonomic basis vectors or corresponding interme-
diate metric tensor. Moreover, this method o,ers an
alternative viewpoint of kinematics of elastic defor-
mation in terms of the total deformation (between Bref

and Bcur) of a triad of lattice director vectors assigned
to each material point. However, as we have shown
in Eq. (50), quanti�cation of the anholonomicity of
B̃int (i.e., the lack of integrability of Fp�

:A) requires
knowledge of the anholonomic mapping H, which
in turn implies the intermediate con�guration metric
g̃�� = H−1A

:� GABH−1B

:� as noted in Eq. (43). (It should

be mentioned that the metric H−1A

:� GABH−1B

:� is gener-
ally non-Euclidean, so this choice does not contradict
the non-Euclidean nature of the anholonomic space
B̃int.) From the perspective of Eq. (50), since H�

:B

and its gradient are required, in addition to F̂pB

:A and
its gradient, this method is more complicated than
the other choices (34) and (35), which require only
higher gradients of either Fp�

:A (Eq. (4)) or Fe−1�

:a (Eq.
(5)). This aspect leads us to favor g̃�� = C̃e

�� (34) over

g̃�� = H−1A

:� GABH−1B

:� (43).
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6. Concluding remarks

In higher-order gradient plasticity theories couched
explicitly upon the mechanics of incompatible defects,
special care should be taken when prescribing metric
tensors for the anholonomic (e.g., natural or interme-
diate) con�gurations that are inherent to the kinematic
description, since various scalar products, transpose
maps, tensorial symmetry operations, and Jacobian
invariants depend explicitly upon the chosen
anholonomic basis vectors and their inner product. We
discuss several alternative choices to the popular and
apparently contradictory (but not incorrect) choice
of a Euclidean metric tensor (and accompanying
Cartesian basis vectors) attached to an anholonomic
(and hence non-Euclidean) con�guration space. En-
dorsed here as an intermediate con�guration metric
is the pull-back of the current con�guration metric
tensor by the elastic deformation mapping (i.e., the
covariant elastic strain referred to the intermediate
con�guration).
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